On Distributive Subalgebras of Qualitative Spatial and Temporal Calculi

نویسندگان

  • Zhiguo Long
  • Sanjiang Li
چکیده

Qualitative calculi play a central role in representing and reasoning about qualitative spatial and temporal knowledge. This paper studies distributive subalgebras of qualitative calculi, which are subalgebras in which (weak) composition distributives over nonempty intersections. It has been proven for RCC5 and RCC8 that path consistent constraint network over a distributive subalgebra is always minimal and globally consistent (in the sense of strong n-consistency) in a qualitative sense. The well-known subclass of convex interval relations provides one such an example of distributive subalgebras. This paper first gives a characterisation of distributive subalgebras, which states that the intersection of a set of n ≥ 3 relations in the subalgebra is nonempty if and only if the intersection of every two of these relations is nonempty. We further compute and generate all maximal distributive subalgebras for Point Algebra, Interval Algebra, RCC5 and RCC8, Cardinal Relation Algebra, and Rectangle Algebra. Lastly, we establish two nice properties which will play an important role in efficient reasoning with constraint networks involving a large number of variables.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analyzing Qualitative Spatio-Temporal Calculi using Algebraic Geometry

Qualitative spatial reasoning is based on calculi which comprise relations and operation tables that encode operations like relation composition. Designing a calculus involves determining these tables and analyzing reasoning properties—a demanding task that is susceptible to errors if performed manually. This paper is concerned with automating computation of operation tables and analysis of qua...

متن کامل

Algebraic Properties of Qualitative Spatio-temporal Calculi

Qualitative spatial and temporal reasoning is based on socalled qualitative calculi. Algebraic properties of these calculi have several implications on reasoning algorithms. But what exactly is a qualitative calculus? And to which extent do the qualitative calculi proposed meet these demands? The literature provides various answers to the first question but only few facts about the second. In t...

متن کامل

Connecting Qualitative Spatial and Temporal Representations by Propositional Closure

This paper establishes new relationships between existing qualitative spatial and temporal representations. Qualitative spatial and temporal representation (QSTR) is concerned with abstractions of infinite spatial and temporal domains, which represent configurations of objects using a finite vocabulary of relations, also called a qualitative calculus. Classically, reasoning in QSTR is based on ...

متن کامل

Automated Complexity Proofs for Qualitative Spatial and Temporal Calculi

Identifying complexity results for qualitative spatial or temporal calculi has been an important research topic in the past 15 years. Most interesting calculi have been shown to be at least NP-complete, but if tractable fragments of the calculi can be found then efficient reasoning with these calculi is possible. In order to get the most efficient reasoning algorithms, we are interested in iden...

متن کامل

Spatial Webs: Position Paper

Fundamental to any Spatial Information System, including a Spatial Web, is a characterisation of spatial entities and the relationships between them. This is an area I have worked in since the late 1980s, concentrating in particular on Qualitative Spatial and Spatio-temporal reasoning, particularly mereotopological relations over regions [5], but also on orientation [12]. The Leeds work on mere...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015